初中的数学是不是让你抓破脑袋?有哪几种好的数学学习技巧呢?以下是我们给大家带来的中考数学要点顺口溜及三角形复习,仅供考生参考,欢迎大家阅读!
2019年中考数学复习:三角形
1、三线八角:两条直线被第三条直线所截而成的八个角。其中,
同位角:位置相同,及同旁和同规;
内错角:内部,两旁;
同旁内角:内部,同旁。
2、平行线的判定办法:
1)同位角相等,两直线平行
2)内错角相等,两直线平行
3)同旁内角互补,两直线平行
3、平行线的性质:
1)两直线平行,同位角相等
2)两直线平行,内错角相等
3)两直线平行,同旁内角互补
4、三角形的分类:
1)按角分:锐角三角形、直角三角形、钝角三角形
2)按边分:等腰三角形、不等边三角形
5、三角形的性质:
1)三角形中任意两边之和大于第三边,任意两边只差小于第三边
2)三角形内角和为180o
3)三角形外角等于与之不相邻的两个内角的和
6、三角形中的主要线段:
1)三角形的中位线:连接三角形两边中点的线段
中位线性质:中位线平行于第三边,且等于第三边的一半。
2)三角形的中线、高线、角平分线都是线段
7、等腰三角形的性质和判定:
1)等腰三角形的两个底角相等
2)等腰三角形底边上的高、中线、顶角的角平分线互相重合,简称三线合一
3)有两个角相等的三角形是等腰三角形
8、等边三角形的性质和判定:
1)等边三角形每一个角都等于60o,同样具有三线合一的性质
2)三个角相等的三角形是等边三角形;三边相等的三角形是等边三角形;一个角等于60o的等腰三角形是等边三角形
9、直角三角形的性质和判定:
1)直角三角形两个锐角和为90o
2)直角三角形中30o所对的直角边等于斜边的一半
3)直角三角形中,斜边的中线等于斜边的一半
4)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方
5)勾股定理的逆定理:若一个三角形中,有两边的平方和等于第三边的平方,则这个三角形是直角三角形
10、全等三角形:
1)对应边相等,对应角相等的三角形叫全等三角形
2)全等三角形的判定办法:SSS、SAS、ASA、AAS、HL
【观察这五种办法发现,要证三角形全等,至少要有一组相等的边,因此在应用是要培养先找边的习性】
3)全等三角形的性质:全等三角形的对应边、对应角、面积、周长、对应高、对应中线、对应角平分线都相等
11、剖析、证明几何题的常用办法:
1)综合法:从命题的题设出发,通过一系列的有关概念、公理、定理的应用,逐步向前推进,知道问题解决
2)剖析法:从命题的结论出发,不断探寻使结论成立的条件,直到已知条件
3)两头凑法:将剖析法和综合法合并采用,比较起来,剖析法利于考虑,综合法适宜表达,因此在实质考虑问题时,可合并采用灵活处置。以利于缩短题设与结论间的距离,最后达到完全沟通。
2019年中考数学要点顺口溜
有理数的加法运算:同号相加一边倒;异号相加强减小,符号跟着大的跑;绝对值相等零正好。【注】大减小是指绝对值的大小。
合并同类项:合并同类项,法则不可以忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,重要看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。2n+1=-2n+12n=2n
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首尾括号带平方,尾项符号随中央。
因式分解:一提二套三分组,细看几项不不靠谱,两项只用平方差,三项十字相乘法,阵法熟练不粗心,四项仔细看了解,若有三个平方数,就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看了解。
代入口决:挖去字母换上数,数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出括弧,逐级向下变括弧
单项式运算:加、减、乘、除、乘方,三级运算分得清,系数进行同级算,指数运算降级行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大于取两边,小于取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变;乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积重要;找出最简公分母,通分不是很难;变号需要两处,结果需要最简。
分式方程的解法步骤:同乘最简公分母,化成整式写了解,求得解后须验根,原留、增舍别含糊。
最简根式的条件:最简根式三条件,号内不把分母含,幂指根指要互质,幂指比根指小一点。
特殊点坐标特点:坐标平面点,横在前来纵在后;,,和,四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特点有特征,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不一样;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不可以;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数分析式写成y=k+b、二次函数的分析式写成y=a2+k的形式,则用下面后的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更容易,经过原点一直线;两个系数k与b,功效之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是重要;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a有关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标主要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不一样表达能互换。
反比例函数图像与性质口诀:反比例函数有特征,双曲线相背离的远;k为正,图在一、三限,k为负,图在二、四限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数概念:初中所学的三角函数有正弦、余弦、正切、余切,它们实质是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记概念:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷直刀切。正:
正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值记忆:第一记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
数字巧记:=1.414=1.7321=2.236=2.449=2.645=2.828=3.16
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,需要相等且平行。对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△现;延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,如何添?找出规律是重要,题中若有角分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很重要,两圆相切作公切,两圆相交连公弦。